pypesto.objective.roadrunner
RoadRunner objective
- class pypesto.objective.roadrunner.ExpData[source]
Bases:
object
Class for managing experimental data for a single condition.
- __init__(condition_id, measurements, observable_ids, noise_distributions, noise_formulae)[source]
Initialize the ExpData object.
- Parameters:
condition_id (
str
) – Identifier of the condition.measurements (
ndarray
) – Numpy Array containing the measurement data. It is a 2D array of dimension (n_timepoints, n_observables + 1). The first column is the timepoints, the remaining columns are the observable values. Observables not measured at a given timepoint should be NaN.timepoints – Timepoints of the measurement data.
observable_ids (
Sequence
[str
]) – Observable ids of the measurement data. Order must match the columns of the measurements array (-time).noise_distributions (
ndarray
) – Numpy Array describing noise distributions of the measurement data. Dimension: (n_timepoints, n_observables). Each entry is a string describing scale and type of noise distribution, the name is “scale_type”. E.g. “lin_normal”, “log_normal”, “log10_normal”.noise_formulae (
ndarray
) – Numpy Array describing noise formulae of the measurement data. Dimension: (n_timepoints, n_observables). Each entry is a string describing the noise formula, either a parameter name or a constant.
- static from_petab_problem(petab_problem)[source]
Create a list of ExpData object from a petab problem.
- static from_petab_single_condition(condition_id, petab_problem)[source]
Create an ExpData object from a single condition of a petab problem.
- get_observable_ids()[source]
Get the observable ids of the measurement data.
- Returns:
observable_ids – Observable ids of the measurement data.
- property timepoints
Timepoints of the measurement data.
- class pypesto.objective.roadrunner.PetabImporterRR[source]
Bases:
object
Importer for PEtab problems using RoadRunner.
Create a
roadrunner.RoadRunner
instance, apypesto.objective.RoadRunnerObjective
or apypesto.problem.Problem
from PEtab files. The actual form of the likelihood depends on the noise model specified in the provided PEtab problem. For more information, see the PEtab documentation.- create_objective(rr=None, edatas=None)[source]
Create a
pypesto.objective.RoadRunnerObjective
.- Parameters:
- Return type:
- create_prior()[source]
Create a prior from the parameter table.
Returns None, if no priors are defined.
- Return type:
- create_problem(objective=None, x_guesses=None, problem_kwargs=None, startpoint_kwargs=None, **kwargs)[source]
Create a
pypesto.problem.Problem
.- Parameters:
objective (
RoadRunnerObjective
|None
) – Objective as created bycreate_objective()
.x_guesses (
Iterable
[float
] |None
) – Guesses for the parameter values, shape (g, dim), where g denotes the number of guesses. These are used as start points in the optimization.problem_kwargs (
dict
[str
,Any
] |None
) – Passed topypesto.problem.Problem.__init__()
.startpoint_kwargs (
dict
[str
,Any
] |None
) – Keyword arguments forwarded toPetabImporter.create_startpoint_method()
.**kwargs – Additional key word arguments passed on to the objective, if not provided.
- Return type:
- Returns:
A
pypesto.problem.Problem
instance.
- create_startpoint_method(**kwargs)[source]
Create a startpoint method.
- Parameters:
**kwargs – Additional keyword arguments passed on to
pypesto.startpoint.FunctionStartpoints.__init__()
.- Return type:
- fill_model()[source]
Fill the RoadRunner model inplace from the PEtab problem.
- Parameters:
return_model – Flag indicating if the model should be returned.
- class pypesto.objective.roadrunner.RoadRunnerCalculator[source]
Bases:
object
Class to handle RoadRunner simulation and obtain objective value.
- __call__(x_dct, mode, roadrunner_instance, edatas, x_ids, parameter_mapping, petab_problem, solver_options=None)[source]
Perform the RoadRunner call and obtain objective function values.
- Parameters:
x_dct (
dict
) – Parameter dictionary.mode (
Literal
['mode_fun'
,'mode_res'
]) – Mode of the call.roadrunner_instance (
RoadRunner
) – RoadRunner instance.parameter_mapping (
list
[tuple
[dict
[str
,str
|Number
],dict
[str
,str
|Number
],dict
[str
,str
],dict
[str
,str
]]]) – Parameter parameter_mapping.petab_problem (
Problem
) – PEtab problem.solver_options (
SolverOptions
|None
) – Solver options of the roadrunner instance Integrator. These will modify the roadrunner instance inplace.
- Returns:
Tuple of objective function values.
- fill_in_parameters(problem_parameters, roadrunner_instance=None, parameter_mapping=None, preeq=False, filling_mode=None)[source]
Fill in parameters into the roadrunner instance.
- Parameters:
roadrunner_instance (
RoadRunner
|None
) – RoadRunner instance to fill in parametersproblem_parameters (
dict
) – Problem parameters as parameterId=>value dict. Only parameters included here will be set. Remaining parameters will be used as already set in amici_model and edata.parameter_mapping (
tuple
[dict
[str
,str
|Number
],dict
[str
,str
|Number
],dict
[str
,str
],dict
[str
,str
]] |None
) – Parameter mapping for current condition. Quadruple of dicts, where the first dict contains the parameter mapping for pre- equilibration, the second dict contains the parameter mapping for the simulation, the third and fourth dict contain the scaling factors for the pre-equilibration and simulation, respectively.preeq (
bool
) – Whether to fill in parameters for pre-equilibration.filling_mode (
str
|None
) – Which parameters to fill in. If None or “all”, all parameters are filled in. Other options are “only_parameters” and “only_species”.
- Return type:
- Returns:
dict – Mapping of parameter IDs to values.
- simulate_per_condition(x_dct, roadrunner_instance, edata, parameter_mapping_per_condition)[source]
Simulate the model for a single condition.
- Parameters:
x_dct (
dict
) – Parameter dictionary.roadrunner_instance (
RoadRunner
) – RoadRunner instance.edata (
ExpData
) – ExpData of a single condition.parameter_mapping_per_condition (
tuple
[dict
[str
,str
|Number
],dict
[str
,str
|Number
],dict
[str
,str
],dict
[str
,str
]]) – Parameter parameter_mapping for a single condition.
- Return type:
- Returns:
Tuple of simulation results in form of a numpy array and the
negative log-likelihood.
- class pypesto.objective.roadrunner.SolverOptions[source]
Bases:
dict
Class for managing solver options of roadrunner.