Source code for pypesto.objective.base

import numpy as np
import pandas as pd
import copy
import logging
import abc
from typing import Dict, Iterable, Sequence, Tuple, Union

from .constants import MODE_FUN, MODE_RES, FVAL, GRAD, HESS, RES, SRES
from .history import HistoryBase
from .pre_post_process import PrePostProcessor, FixedParametersProcessor

ResultDict = Dict[str, Union[float, np.ndarray, Dict]]

logger = logging.getLogger(__name__)


[docs]class ObjectiveBase(abc.ABC): """ The objective class is a simple wrapper around the objective function, giving a standardized way of calling. Apart from that, it manages several things including fixing of parameters and history. The objective function is assumed to be in the format of a cost function, log-likelihood function, or log-posterior function. These functions are subject to minimization. For profiling and sampling, the sign is internally flipped, all returned and stored values are however given as returned by this objective function. If maximization is to be performed, the sign should be flipped before creating the objective function. Parameters ---------- x_names: Parameter names that can be optionally used in, e.g., history or gradient checks Attributes ---------- history: For storing the call history. Initialized by the methods, e.g. the optimizer, in `initialize_history()`. pre_post_processor: Preprocess input values to and postprocess output values from __call__. Configured in `update_from_problem()`. """
[docs] def __init__(self, x_names: Sequence[str] = None): self.x_names = x_names self.pre_post_processor = PrePostProcessor() self.history = HistoryBase()
def __deepcopy__(self, memodict=None) -> 'ObjectiveBase': other = type(self)() # maintain type for derived classes for attr in self.__dict__: other.__dict__[attr] = copy.deepcopy(self.__dict__[attr]) return other # The following has_ properties can be used to find out what values # the objective supports. @property def has_fun(self) -> bool: return self.check_sensi_orders((0,), MODE_FUN) @property def has_grad(self) -> bool: return self.check_sensi_orders((1,), MODE_FUN) @property def has_hess(self) -> bool: return self.check_sensi_orders((2,), MODE_FUN) @property def has_hessp(self) -> bool: # Not supported yet return False @property def has_res(self) -> bool: return self.check_sensi_orders((0,), MODE_RES) @property def has_sres(self) -> bool: return self.check_sensi_orders((1,), MODE_RES)
[docs] def initialize(self): """Initialize the objective function. This function is used at the beginning of an analysis, e.g. optimization, and can e.g. reset the objective memory. By default does nothing. """
[docs] def __call__( self, x: np.ndarray, sensi_orders: Tuple[int, ...] = (0, ), mode: str = MODE_FUN, return_dict: bool = False, **kwargs ) -> Union[float, np.ndarray, Tuple, ResultDict]: """ Method to obtain arbitrary sensitivities. This is the central method which is always called, also by the get_* methods. There are different ways in which an optimizer calls the objective function, and in how the objective function provides information (e.g. derivatives via separate functions or along with the function values). The different calling modes increase efficiency in space and time and make the objective flexible. Parameters ---------- x: The parameters for which to evaluate the objective function. sensi_orders: Specifies which sensitivities to compute, e.g. (0,1) -> fval, grad. mode: Whether to compute function values or residuals. return_dict: If False (default), the result is a Tuple of the requested values in the requested order. Tuples of length one are flattened. If True, instead a dict is returned which can carry further information. Returns ------- result: By default, this is a tuple of the requested function values and derivatives in the requested order (if only 1 value, the tuple is flattened). If `return_dict`, then instead a dict is returned with function values and derivatives indicated by ids. """ # copy parameter vector to prevent side effects x = np.array(x).copy() # check input if not self.check_mode(mode): raise ValueError(f"This Objective cannot be called with mode" f"={mode}.") if not self.check_sensi_orders(sensi_orders, mode): raise ValueError(f"This Objective cannot be called with " f"sensi_orders= {sensi_orders} and mode={mode}.") # pre-process x_full = self.pre_post_processor.preprocess(x) # compute result result = self.call_unprocessed(x_full, sensi_orders, mode, **kwargs) # post-process result = self.pre_post_processor.postprocess(result) # update history self.history.update(x, sensi_orders, mode, result) # map to output format if not return_dict: result = ObjectiveBase.output_to_tuple(sensi_orders, mode, **result) return result
[docs] @abc.abstractmethod def call_unprocessed( self, x: np.ndarray, sensi_orders: Tuple[int, ...], mode: str, **kwargs ) -> ResultDict: """ Call objective function without pre- or post-processing and formatting. Parameters ---------- x: The parameters for which to evaluate the objective function. sensi_orders: Specifies which sensitivities to compute, e.g. (0,1) -> fval, grad. mode: Whether to compute function values or residuals. Returns ------- result: A dict containing the results. """ raise NotImplementedError()
[docs] @abc.abstractmethod def check_sensi_orders(self, sensi_orders, mode) -> bool: """ Check if the objective is able to compute the requested sensitivities. Parameters ---------- sensi_orders: Specifies which sensitivities to compute, e.g. (0,1) -> fval, grad. mode: Whether to compute function values or residuals. Returns ------- flag: Boolean indicating whether combination of sensi_orders and mode is supported """ raise NotImplementedError()
[docs] @abc.abstractmethod def check_mode(self, mode) -> bool: """ Check if the objective is able to compute in the requested mode. Parameters ---------- mode: Whether to compute function values or residuals. Returns ------- flag: Boolean indicating whether mode is supported """ raise NotImplementedError()
[docs] @staticmethod def output_to_tuple( sensi_orders: Tuple[int, ...], mode: str, **kwargs: Union[float, np.ndarray] ) -> Tuple: """ Return values as requested by the caller, since usually only a subset is demanded. One output is returned as-is, more than one output are returned as a tuple in order (fval, grad, hess). """ output = () if mode == MODE_FUN: if 0 in sensi_orders: output += (kwargs[FVAL],) if 1 in sensi_orders: output += (kwargs[GRAD],) if 2 in sensi_orders: output += (kwargs[HESS],) elif mode == MODE_RES: if 0 in sensi_orders: output += (kwargs[RES],) if 1 in sensi_orders: output += (kwargs[SRES],) if len(output) == 1: output = output[0] return output
# The following are convenience functions for getting specific outputs.
[docs] def get_fval(self, x: np.ndarray) -> float: """ Get the function value at x. """ fval = self(x, (0,), MODE_FUN) return fval
[docs] def get_grad(self, x: np.ndarray) -> np.ndarray: """ Get the gradient at x. """ grad = self(x, (1,), MODE_FUN) return grad
[docs] def get_hess(self, x: np.ndarray) -> np.ndarray: """ Get the Hessian at x. """ hess = self(x, (2,), MODE_FUN) return hess
[docs] def get_res(self, x: np.ndarray) -> np.ndarray: """ Get the residuals at x. """ res = self(x, (0,), MODE_RES) return res
[docs] def get_sres(self, x: np.ndarray) -> np.ndarray: """ Get the residual sensitivities at x. """ sres = self(x, (1,), MODE_RES) return sres
[docs] def update_from_problem( self, dim_full: int, x_free_indices: Sequence[int], x_fixed_indices: Sequence[int], x_fixed_vals: Sequence[float]): """ Handle fixed parameters. Later, the objective will be given parameter vectors x of dimension dim, which have to be filled up with fixed parameter values to form a vector of dimension dim_full >= dim. This vector is then used to compute function value and derivatives. The derivatives must later be reduced again to dimension dim. This is so as to make the fixing of parameters transparent to the caller. The methods preprocess, postprocess are overwritten for the above functionality, respectively. Parameters ---------- dim_full: Dimension of the full vector including fixed parameters. x_free_indices: Vector containing the indices (zero-based) of free parameters (complimentary to x_fixed_indices). x_fixed_indices: Vector containing the indices (zero-based) of parameter components that are not to be optimized. x_fixed_vals: Vector of the same length as x_fixed_indices, containing the values of the fixed parameters. """ pre_post_processor = FixedParametersProcessor( dim_full=dim_full, x_free_indices=x_free_indices, x_fixed_indices=x_fixed_indices, x_fixed_vals=x_fixed_vals) self.pre_post_processor = pre_post_processor
[docs] def check_grad_multi_eps( self, *args, multi_eps: Iterable = None, label: str = 'rel_err', **kwargs, ): """ Equivalent to the `ObjectiveBase.check_grad` method, except multiple finite difference step sizes are tested. The result contains the lowest finite difference for each parameter, and the corresponding finite difference step size. Parameters ---------- All `ObjectiveBase.check_grad` method parameters. multi_eps: The finite difference step sizes to be tested. label: The label of the column that will be minimized for each parameter. Valid options are the column labels of the dataframe returned by the `ObjectiveBase.check_grad` method. """ if multi_eps is None: multi_eps = {1e-1, 1e-3, 1e-5, 1e-7, 1e-9} results = {} for eps in multi_eps: results[eps] = self.check_grad(*args, **kwargs, eps=eps) # The combined result is, for each parameter, the gradient check from # the step size (`eps`) that produced the smallest error (`label`). combined_result = None for eps, result in results.items(): result['eps'] = eps if combined_result is None: combined_result = result continue # Replace rows in `combined_result` with corresponding rows # in `result` that have an improved value in column `label`. mask_improvements = result[label] < combined_result[label] combined_result.loc[mask_improvements, :] = \ result.loc[mask_improvements, :] return combined_result
[docs] def check_grad( self, x: np.ndarray, x_indices: Sequence[int] = None, eps: float = 1e-5, verbosity: int = 1, mode: str = MODE_FUN, detailed: bool = False ) -> pd.DataFrame: """ Compare gradient evaluation: Firstly approximate via finite differences, and secondly use the objective gradient. Parameters ---------- x: The parameters for which to evaluate the gradient. x_indices: Indices for which to compute gradients. Default: all. eps: Finite differences step size. verbosity: Level of verbosity for function output. 0: no output, 1: summary for all parameters, 2: summary for individual parameters. mode: Residual (MODE_RES) or objective function value (MODE_FUN) computation mode. detailed: Toggle whether additional values are returned. Additional values are function values, and the central difference weighted by the difference in output from all methods (standard deviation and mean). Returns ---------- result: gradient, finite difference approximations and error estimates. """ if x_indices is None: x_indices = list(range(len(x))) # function value and objective gradient fval, grad = self(x, (0, 1), mode) grad_list = [] fd_f_list = [] fd_b_list = [] fd_c_list = [] fd_err_list = [] abs_err_list = [] rel_err_list = [] if detailed: fval_p_list = [] fval_m_list = [] std_check_list = [] mean_check_list = [] # loop over indices for ix in x_indices: # forward (plus) point x_p = copy.deepcopy(x) x_p[ix] += eps fval_p = self(x_p, (0,), mode) # backward (minus) point x_m = copy.deepcopy(x) x_m[ix] -= eps fval_m = self(x_m, (0,), mode) # finite differences fd_f_ix = (fval_p - fval) / eps fd_b_ix = (fval - fval_m) / eps fd_c_ix = (fval_p - fval_m) / (2 * eps) # gradient in direction ix grad_ix = grad[ix] if grad.ndim == 1 else grad[:, ix] # errors fd_err_ix = abs(fd_f_ix - fd_b_ix) abs_err_ix = abs(grad_ix - fd_c_ix) rel_err_ix = abs(abs_err_ix / (fd_c_ix + eps)) if detailed: std_check_ix = (grad_ix - fd_c_ix)/np.std([ fd_f_ix, fd_b_ix, fd_c_ix ]) mean_check_ix = abs(grad_ix - fd_c_ix)/np.mean([ abs(fd_f_ix - fd_b_ix), abs(fd_f_ix - fd_c_ix), abs(fd_b_ix - fd_c_ix), ]) # log for dimension ix if verbosity > 1: logger.info( f'index: {ix}\n' f'grad: {grad_ix}\n' f'fd_f: {fd_f_ix}\n' f'fd_b: {fd_b_ix}\n' f'fd_c: {fd_c_ix}\n' f'fd_err: {fd_err_ix}\n' f'abs_err: {abs_err_ix}\n' f'rel_err: {rel_err_ix}\n' ) # append to lists grad_list.append(grad_ix) fd_f_list.append(fd_f_ix) fd_b_list.append(fd_b_ix) fd_c_list.append(fd_c_ix) fd_err_list.append(np.mean(fd_err_ix)) abs_err_list.append(np.mean(abs_err_ix)) rel_err_list.append(np.mean(rel_err_ix)) if detailed: fval_p_list.append(fval_p) fval_m_list.append(fval_m) std_check_list.append(std_check_ix) mean_check_list.append(mean_check_ix) # create data dictionary for dataframe data = { 'grad': grad_list, 'fd_f': fd_f_list, 'fd_b': fd_b_list, 'fd_c': fd_c_list, 'fd_err': fd_err_list, 'abs_err': abs_err_list, 'rel_err': rel_err_list, } # update data dictionary if detailed output is requested if detailed: prefix_data = { 'fval': [fval]*len(x_indices), 'fval_p': fval_p_list, 'fval_m': fval_m_list, } std_str = '(grad-fd_c)/std({fd_f,fd_b,fd_c})' mean_str = '|grad-fd_c|/mean(|fd_f-fd_b|,|fd_f-fd_c|,|fd_b-fd_c|)' postfix_data = { std_str: std_check_list, mean_str: mean_check_list, } data = {**prefix_data, **data, **postfix_data} # create dataframe result = pd.DataFrame(data=data, index=[ self.x_names[ix] if self.x_names is not None else f'x_{ix}' for ix in x_indices ]) # log full result if verbosity > 0: logger.info(result) return result