

    
      
          
            
  


Welcome to pyPESTO’s documentation!

[image: _images/pyPESTO.svg]
 [https://travis-ci.com/ICB-DCM/pyPESTO]
Version: 0.0.2

Source code: https://github.com/icb-dcm/pypesto




User's guide


	Install and upgrade
	Requirements

	Install from PIP

	Install from GIT

	Upgrade

	Install optional packages





	Examples
	Rosenbrock banana

	Conversion reaction

	Fixed parameters

	AMICI Python example “Boehm”

	Download the examples as notebooks










Developer's guide


	Contribute
	Contribute documentation

	Contribute tests

	Contribute code





	Deploy
	Versioning scheme

	Deploy a new release










API reference


	Objective

	Problem

	Optimize

	Profile

	Sample

	Result

	Visualize

	Startpoint






About


	Release notes
	0.0 series





	Authors

	Contact

	License








Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  


Install and upgrade


Requirements

This package requires Python 3.6 or later.
It is tested on Linux using Travis continuous integration.


I cannot use my system’s Python distribution, what now?

Several Python distributions can co-exist on a single system.
If you don’t have access to a recent Python version via your
system’s package manager (this might be the case for old
operating systems), it is recommended to install the latest
version of the
Anaconda Python 3 distribution [https://www.continuum.io/downloads].

Also, there is the possibility to use multiple virtual environments via:

python3 -m virtualenv ENV_NAME
source ENV_NAME/bin/activate





where ENV_NAME denotes an individual environment name,
if you do not want to mess up the system environment.






Install from PIP

The package can be installed from the Python Package Index PyPI
via pip:

pip3 install pypesto








Install from GIT

If you want the bleeding edge version, install directly from github:

pip3 install git+https://github.com/icb-dcm/pypesto.git





If you need to have access to the source code, you can download it via:

git clone https://github.com/icb-dcm/pypesto.git





and then install from the local repository via:

cd pypesto
pip3 install .








Upgrade

If you want to upgrade from an existing previous version, replace
install by ìnstall --upgrade in the above commands.




Install optional packages


	This package includes multiple comfort methods simplyfing its use for
parameter estimation for models generated using the toolbox
amici [https://www.github.com/icb-dcm/amici].
To use AMICI, install it via pip:

pip3 install amici







	This package inherently supports optimization using the dlib toolbox.
To use it, install dlib via:

pip3 install dlib















          

      

      

    

  

    
      
          
            
  


Examples

The following examples cover typical use cases and should help get a better idea of how to use this package:



	Rosenbrock banana

	Conversion reaction

	Fixed parameters

	AMICI Python example “Boehm”






Download the examples as notebooks


	Rosenbrock


	Conversion reaction


	Fixed parameters


	Boehm model





Note

Some of the notebooks have extra dependencies.









          

      

      

    

  

    
      
          
            
  


Rosenbrock banana

Here, we perform optimization for the Rosenbrock banana function, which does not require an AMICI model. In particular, we try several ways of specifying derivative information.


[1]:






import pypesto
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

%matplotlib inline








Define the objective and problem


[2]:






# first type of objective
objective1 = pypesto.Objective(fun=sp.optimize.rosen,
                               grad=sp.optimize.rosen_der,
                               hess=sp.optimize.rosen_hess)

# second type of objective
def rosen2(x):
    return sp.optimize.rosen(x), sp.optimize.rosen_der(x), sp.optimize.rosen_hess(x)
objective2 = pypesto.Objective(fun=rosen2, grad=True, hess=True)

dim_full = 10
lb = -2 * np.ones((dim_full, 1))
ub = 2 * np.ones((dim_full, 1))

problem1 = pypesto.Problem(objective=objective1, lb=lb, ub=ub)
problem2 = pypesto.Problem(objective=objective2, lb=lb, ub=ub)










Illustration


[3]:






x = np.arange(-2, 2, 0.1)
y = np.arange(-2, 2, 0.1)
x, y = np.meshgrid(x, y)
z = np.zeros_like(x)
for j in range(0, x.shape[0]):
    for k in range(0, x.shape[1]):
        z[j,k] = objective1([x[j,k], y[j,k]], (0,))

fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_surface(X=x, Y=y, Z=z)








[3]:






<mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fd15ad50278>












[image: ../_images/example_rosenbrock_6_1.png]







Run optimization


[4]:






optimizer = pypesto.ScipyOptimizer()
n_starts = 20

result1 = pypesto.minimize(problem=problem1, optimizer=optimizer, n_starts=n_starts)
result2 = pypesto.minimize(problem=problem2, optimizer=optimizer, n_starts=n_starts)










Visualize and analyze results

pypesto offers easy-to-use visualization routines:


[5]:






import pypesto.visualize

pypesto.visualize.waterfall(result1)
pypesto.visualize.parameters(result1)








[5]:






<matplotlib.axes._subplots.AxesSubplot at 0x7fd15a929d68>












[image: ../_images/example_rosenbrock_11_1.png]









[image: ../_images/example_rosenbrock_11_2.png]




If the result needs to be examined in more detail, it can easily be exported as a pandas.DataFrame:


[6]:






result1.optimize_result.as_dataframe(['fval', 'n_fval', 'n_grad', 'n_hess', 'n_res', 'n_sres', 'time'])








[6]:
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Conversion reaction


[1]:






import amici
import amici.plotting
import pypesto








Compile AMICI model


[2]:






import importlib
import os
import sys
import numpy as np

# sbml file we want to import
sbml_file = 'conversion_reaction/model_conversion_reaction.xml'
# name of the model that will also be the name of the python module
model_name = 'model_conversion_reaction'
# directory to which the generated model code is written
model_output_dir = 'tmp/' + model_name

# import sbml model, complile and generate amici module
sbml_importer = amici.SbmlImporter(sbml_file)
sbml_importer.sbml2amici(model_name,
                         model_output_dir,
                         verbose=False)















libSBML Warning (SBML unit consistency): In situations where a mathematical expression refers to a compartment, species or parameter, it is necessary to know the units of the object to establish unit consistency. In models where the units of an object have not been declared, libSBML does not yet have the functionality to accurately verify the consistency of the units in mathematical expressions referring to that object.
 The units of the <parameter> 'R1_k2' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): If the attribute 'units' on a given Parameter object has not been set, then the unit of measurement associated with that parameter's value is undefined.
Reference: L3V1 Section 4.7.3
 The <parameter> with id 'R1_k2' does not have a 'units' attribute.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression refers to a compartment, species or parameter, it is necessary to know the units of the object to establish unit consistency. In models where the units of an object have not been declared, libSBML does not yet have the functionality to accurately verify the consistency of the units in mathematical expressions referring to that object.
 The units of the <parameter> 'R1_k1' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): If the attribute 'units' on a given Parameter object has not been set, then the unit of measurement associated with that parameter's value is undefined.
Reference: L3V1 Section 4.7.3
 The <parameter> with id 'R1_k1' does not have a 'units' attribute.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'compartment * (R1_k1 * A - R1_k2 * B)' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'R1_k2' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'R1_k1' does not have a 'units' attribute.










Load AMICI model


[3]:






# load amici module (the usual starting point later for the analysis)
sys.path.insert(0, os.path.abspath(model_output_dir))
model_module = importlib.import_module(model_name)
model = model_module.getModel()
model.requireSensitivitiesForAllParameters()
model.setTimepoints(amici.DoubleVector(np.linspace(0, 10, 11)))
model.setParameterScale(amici.ParameterScaling_log10)
model.setParameters(amici.DoubleVector([-0.3,-0.7]))
solver = model.getSolver()
solver.setSensitivityMethod(amici.SensitivityMethod_forward)
solver.setSensitivityOrder(amici.SensitivityOrder_first)

# how to run amici now:
rdata = amici.runAmiciSimulation(model, solver, None)
amici.plotting.plotStateTrajectories(rdata)
edata = amici.ExpData(rdata, 0.2, 0.0)












[image: ../_images/example_conversion_reaction_5_0.png]







Optimize


[4]:






# create objective function from amici model
# pesto.AmiciObjective is derived from pesto.Objective,
# the general pesto objective function class
objective = pypesto.AmiciObjective(model, solver, [edata], 1)

# create optimizer object which contains all information for doing the optimization
optimizer = pypesto.ScipyOptimizer(method='ls_trf')

#optimizer.solver = 'bfgs|meigo'
# if select meigo -> also set default values in solver_options
#optimizer.options = {'maxiter': 1000, 'disp': True} # = pesto.default_options_meigo()
#optimizer.startpoints = []
#optimizer.startpoint_method = 'lhs|uniform|something|function'
#optimizer.n_starts = 100

# see PestoOptions.m for more required options here
# returns OptimizationResult, see parameters.MS for what to return
# list of final optim results foreach multistart, times, hess, grad,
# flags, meta information (which optimizer -> optimizer.get_repr())

# create problem object containing all information on the problem to be solved
problem = pypesto.Problem(objective=objective,
                          lb=[-2,-2], ub=[2,2])

# maybe lb, ub = inf
# other constraints: kwargs, class pesto.Constraints
# constraints on pams, states, esp. pesto.AmiciConstraints (e.g. pam1 + pam2<= const)
# if optimizer cannot handle -> error
# maybe also scaling / transformation of parameters encoded here

# do the optimization
result = pypesto.minimize(problem=problem,
                          optimizer=optimizer,
                          n_starts=10)
# optimize is a function since it does not need an internal memory,
# just takes input and returns output in the form of a Result object
# 'result' parameter: e.g. some results from somewhere -> pick best start points










Visualize


[5]:






# waterfall, parameter space, scatter plots, fits to data
# different functions for different plotting types
import pypesto.visualize

pypesto.visualize.waterfall(result)
pypesto.visualize.parameters(result)








[5]:






<matplotlib.axes._subplots.AxesSubplot at 0x7fb9a6218748>
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Data storage


[6]:






# result = pypesto.storage.load('db_file.db')










Profiles


[7]:






# there are three main parts: optimize, profile, sample. the overall structure of profiles and sampling
# will be similar to optimizer like above.
# we intend to only have just one result object which can be reused everywhere, but the problem of how to
# not have one huge class but
# maybe simplified views on it for optimization, profiles and sampling is still to be solved

# profiler = pypesto.Profiler()

# result = pypesto.profile(problem, profiler, result=None)
# possibly pass result object from optimization to get good parameter guesses










Sampling


[8]:






# sampler = pypesto.Sampler()

# result = pypesto.sample(problem, sampler, result=None)








[9]:






# open: how to parallelize. the idea is to use methods similar to those in pyabc for working on clusters.
# one way would be to specify an additional 'engine' object passed to optimize(), profile(), sample(),
# which in the default setting just does a for loop, but can also be customized.
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Fixed parameters

In this notebook we will show how to use fixed parameters. Therefore, we employ our Rosenbrock example. We define two problems, where for the first problem all parameters are optimized, and for the second we fix some of them to specified values.


Define problem


[1]:






import pypesto
import pypesto.visualize
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

%matplotlib inline








[2]:






objective = pypesto.Objective(fun=sp.optimize.rosen,
                              grad=sp.optimize.rosen_der,
                              hess=sp.optimize.rosen_hess)

dim_full = 4
lb = -2 * np.ones((dim_full,1))
ub = 2 * np.ones((dim_full,1))

problem1 = pypesto.Problem(objective=objective, lb=lb, ub=ub)

x_fixed_indices = [1, 3]
x_fixed_vals = [1, 1]
problem2 = pypesto.Problem(objective=objective, lb=lb, ub=ub,
                           x_fixed_indices=x_fixed_indices,
                           x_fixed_vals=x_fixed_vals)










Optimize


[3]:






optimizer = pypesto.ScipyOptimizer()
n_starts = 10

result1 = pypesto.minimize(problem=problem1, optimizer=optimizer,
                           n_starts=n_starts)
result2 = pypesto.minimize(problem=problem2, optimizer=optimizer,
                           n_starts=n_starts)










Visualize


[4]:






fig, ax = plt.subplots()
pypesto.visualize.waterfall(result1, ax)
pypesto.visualize.waterfall(result2, ax)








[4]:






<matplotlib.axes._subplots.AxesSubplot at 0x7f6ae7415eb8>












[image: ../_images/example_fixed_parameters_8_1.png]





[5]:






result1.optimize_result.as_dataframe(['fval', 'x', 'grad'])








[5]:
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AMICI Python example “Boehm”

This is an example using the model [boehm_ProteomeRes2014.xml] model to demonstrate and test SBML import and AMICI Python interface.


[1]:






import libsbml
import importlib
import amici
import pypesto
import os
import sys
import numpy as np
import matplotlib.pyplot as plt

# temporarily add the simulate file
sys.path.insert(0, 'boehm_JProteomeRes2014')

from benchmark_import import DataProvider

# sbml file
sbml_file = 'boehm_JProteomeRes2014/boehm_JProteomeRes2014.xml'

# name of the model that will also be the name of the python module
model_name = 'boehm_JProteomeRes2014'

# output directory
model_output_dir = 'tmp/' + model_name








The example model

Here we use libsbml to show the reactions and species described by the model (this is independent of AMICI).


[2]:






sbml_reader = libsbml.SBMLReader()
sbml_doc = sbml_reader.readSBML(os.path.abspath(sbml_file))
sbml_model = sbml_doc.getModel()
dir(sbml_doc)
print(os.path.abspath(sbml_file))
print('Species: ', [s.getId() for s in sbml_model.getListOfSpecies()])


print('\nReactions:')
for reaction in sbml_model.getListOfReactions():
    reactants = ' + '.join(['%s %s'%(int(r.getStoichiometry()) if r.getStoichiometry() > 1 else '', r.getSpecies()) for r in reaction.getListOfReactants()])
    products  = ' + '.join(['%s %s'%(int(r.getStoichiometry()) if r.getStoichiometry() > 1 else '', r.getSpecies()) for r in reaction.getListOfProducts()])
    reversible = '<' if reaction.getReversible() else ''
    print('%3s: %10s %1s->%10s\t\t[%s]' % (reaction.getId(),
                        reactants,
                        reversible,
                         products,
                        libsbml.formulaToL3String(reaction.getKineticLaw().getMath())))













/home/yannik/pypesto/doc/example/boehm_JProteomeRes2014/boehm_JProteomeRes2014.xml
Species:  ['STAT5A', 'STAT5B', 'pApB', 'pApA', 'pBpB', 'nucpApA', 'nucpApB', 'nucpBpB']

Reactions:
v1_v_0:   2 STAT5A  ->      pApA             [cyt * BaF3_Epo * STAT5A^2 * k_phos]
v2_v_1:  STAT5A +  STAT5B  ->      pApB              [cyt * BaF3_Epo * STAT5A * STAT5B * k_phos]
v3_v_2:   2 STAT5B  ->      pBpB             [cyt * BaF3_Epo * STAT5B^2 * k_phos]
v4_v_3:       pApA  ->   nucpApA             [cyt * k_imp_homo * pApA]
v5_v_4:       pApB  ->   nucpApB             [cyt * k_imp_hetero * pApB]
v6_v_5:       pBpB  ->   nucpBpB             [cyt * k_imp_homo * pBpB]
v7_v_6:    nucpApA  ->  2 STAT5A             [nuc * k_exp_homo * nucpApA]
v8_v_7:    nucpApB  -> STAT5A +  STAT5B              [nuc * k_exp_hetero * nucpApB]
v9_v_8:    nucpBpB  ->  2 STAT5B             [nuc * k_exp_homo * nucpBpB]









Importing an SBML model, compiling and generating an AMICI module

Before we can use AMICI to simulate our model, the SBML model needs to be translated to C++ code. This is done by amici.SbmlImporter.


[3]:






# Create an SbmlImporter instance for our SBML model
sbml_importer = amici.SbmlImporter(sbml_file)













libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <initialAssignment> <math> expression '207.6 * ratio' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <initialAssignment> <math> expression '207.6 - 207.6 * ratio' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <assignmentRule> <math> expression '(100 * pApB + 200 * pApA * specC17) / (pApB + STAT5A * specC17 + 2 * pApA * specC17)' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <assignmentRule> <math> expression '1.25e-07 * exp(-1 * Epo_degradation_BaF3 * t)' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <assignmentRule> <math> expression '-(100 * pApB - 200 * pBpB * (specC17 - 1)) / (STAT5B * (specC17 - 1) - pApB + 2 * pBpB * (specC17 - 1))' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <assignmentRule> <math> expression '(100 * pApB + 100 * STAT5A * specC17 + 200 * pApA * specC17) / (2 * pApB + STAT5A * specC17 + 2 * pApA * specC17 - STAT5B * (specC17 - 1) - 2 * pBpB * (specC17 - 1))' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'cyt * BaF3_Epo * pow(STAT5A, 2) * k_phos' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'cyt * BaF3_Epo * STAT5A * STAT5B * k_phos' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'cyt * BaF3_Epo * pow(STAT5B, 2) * k_phos' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'cyt * k_imp_homo * pApA' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'cyt * k_imp_hetero * pApB' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'cyt * k_imp_homo * pBpB' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'nuc * k_exp_homo * nucpApA' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'nuc * k_exp_hetero * nucpApB' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (SBML unit consistency): In situations where a mathematical expression contains literal numbers or parameters whose units have not been declared, it is not possible to verify accurately the consistency of the units in the expression.
 The units of the <kineticLaw> <math> expression 'nuc * k_exp_homo * nucpBpB' cannot be fully checked. Unit consistency reported as either no errors or further unit errors related to this object may not be accurate.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'Epo_degradation_BaF3' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'k_exp_hetero' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'k_exp_homo' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'k_imp_hetero' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'k_imp_homo' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'k_phos' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'ratio' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'sd_pSTAT5A_rel' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'sd_pSTAT5B_rel' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'sd_rSTAT5A_rel' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'specC17' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'observable_pSTAT5A_rel' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'observable_pSTAT5B_rel' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'observable_rSTAT5A_rel' does not have a 'units' attribute.

libSBML Warning (Modeling practice): As a principle of best modeling practice, the units of a <parameter> should be declared rather than be left undefined. Doing so improves the ability of software to check the consistency of units and helps make it easier to detect potential errors in models.
 The <parameter> with the id 'BaF3_Epo' does not have a 'units' attribute.







In this example, we want to specify fixed parameters, observables and a  parameter. Unfortunately, the latter two are not part of the SBML standard [http://sbml.org/]. However, they can be provided to amici.SbmlImporter.sbml2amici as demonstrated in the following.


Constant parameters

Constant parameters, i.e. parameters with respect to which no sensitivities are to be computed (these are often parameters specifying a certain experimental condition) are provided as a list of parameter names.


[4]:






constantParameters = {'ratio', 'specC17'}










Observables

We used SBML’s `AssignmentRule <http://sbml.org/Software/libSBML/5.13.0/docs//python-api/classlibsbml_1_1_rule.html>`__ as a non-standard way to specify Model outputs within the SBML file. These rules need to be removed prior to the model import (AMICI does at this time not support these Rules). This can be easily done using amici.assignmentRules2observables().

In this example, we introduced parameters named observable_* as targets of the observable AssignmentRules. Where applicable we have observable_*_sigma parameters for  parameters (see below).


[5]:






# Retrieve model output names and formulae from AssignmentRules and remove the respective rules
observables = amici.assignmentRules2observables(
        sbml_importer.sbml, # the libsbml model object
        filter_function=lambda variable: variable.getId().startswith('observable_') and not variable.getId().endswith('_sigma')
    )
print('Observables:', observables)













Observables: {'observable_pSTAT5A_rel': {'name': '', 'formula': '(100 * pApB + 200 * pApA * specC17) / (pApB + STAT5A * specC17 + 2 * pApA * specC17)'}, 'observable_pSTAT5B_rel': {'name': '', 'formula': '-(100 * pApB - 200 * pBpB * (specC17 - 1)) / (STAT5B * (specC17 - 1) - pApB + 2 * pBpB * (specC17 - 1))'}, 'observable_rSTAT5A_rel': {'name': '', 'formula': '(100 * pApB + 100 * STAT5A * specC17 + 200 * pApA * specC17) / (2 * pApB + STAT5A * specC17 + 2 * pApA * specC17 - STAT5B * (specC17 - 1) - 2 * pBpB * (specC17 - 1))'}}









 parameters

To specify measurement noise as a parameter, we simply provide a dictionary with (preexisting) parameter names as keys and a list of observable names as values to indicate which sigma parameter is to be used for which observable.


[6]:






sigmas = {'sd_pSTAT5A_rel', 'sd_pSTAT5B_rel', 'sd_rSTAT5A_rel'}










Generating the module

Now we can generate the python module for our model. amici.SbmlImporter.sbml2amici will symbolically derive the sensitivity equations, generate C++ code for model simulation, and assemble the python module.


[7]:






sbml_importer.sbml2amici(model_name,
                         model_output_dir,
                         verbose=False,
                         observables=observables,
                         constantParameters=constantParameters,
                         sigmas=sigmas
  )










Importing the module and loading the model

If everything went well, we need to add the previously selected model output directory to our PYTHON_PATH and are then ready to load newly generated model:


[8]:






sys.path.insert(0, os.path.abspath(model_output_dir))
model_module = importlib.import_module(model_name)







And get an instance of our model from which we can retrieve information such as parameter names:


[9]:






model = model_module.getModel()

print("Model parameters:", list(model.getParameterIds()))
print("Model outputs:   ", list(model.getObservableIds()))
print("Model states:    ", list(model.getStateIds()))













Model parameters: ['Epo_degradation_BaF3', 'k_exp_hetero', 'k_exp_homo', 'k_imp_hetero', 'k_imp_homo', 'k_phos', 'sd_pSTAT5A_rel', 'sd_pSTAT5B_rel', 'sd_rSTAT5A_rel']
Model outputs:    ['observable_pSTAT5A_rel', 'observable_pSTAT5B_rel', 'observable_rSTAT5A_rel']
Model states:     ['STAT5A', 'STAT5B', 'pApB', 'pApA', 'pBpB', 'nucpApA', 'nucpApB', 'nucpBpB']











Running simulations and analyzing results

After importing the model, we can run simulations using amici.runAmiciSimulation. This requires a Model instance and a Solver instance. Optionally you can provide measurements inside an ExpData instance, as shown later in this notebook.


[10]:






h5_file = 'boehm_JProteomeRes2014/data_boehm_JProteomeRes2014.h5'
dp = DataProvider(h5_file)








[11]:






# set timepoints for which we want to simulate the model
timepoints = amici.DoubleVector(dp.get_timepoints())
model.setTimepoints(timepoints)

# set fixed parameters for which we want to simulate the model
model.setFixedParameters(amici.DoubleVector(np.array([0.693, 0.107])))

# set parameters to optimal values found in the benchmark collection
model.setParameterScale(2)
model.setParameters(amici.DoubleVector(np.array([-1.568917588,
-4.999704894,
-2.209698782,
-1.786006548,
4.990114009,
4.197735488,
0.585755271,
0.818982819,
0.498684404
])))

# Create solver instance
solver = model.getSolver()

# Run simulation using model parameters from the benchmark collection and default solver options
rdata = amici.runAmiciSimulation(model, solver)








[12]:






# Create edata
edata = amici.ExpData(rdata, 1.0, 0)

# set observed data
edata.setObservedData(amici.DoubleVector(dp.get_measurements()[0][:, 0]), 0)
edata.setObservedData(amici.DoubleVector(dp.get_measurements()[0][:, 1]), 1)
edata.setObservedData(amici.DoubleVector(dp.get_measurements()[0][:, 2]), 2)

# set standard deviations to optimal values found in the benchmark collection
edata.setObservedDataStdDev(amici.DoubleVector(np.array(16*[10**0.585755271])), 0)
edata.setObservedDataStdDev(amici.DoubleVector(np.array(16*[10**0.818982819])), 1)
edata.setObservedDataStdDev(amici.DoubleVector(np.array(16*[10**0.498684404])), 2)








[13]:






rdata = amici.runAmiciSimulation(model, solver, edata)

print('Chi2 value reported in benchmark collection: 47.9765479')
print('chi2 value using AMICI:')
print(rdata['chi2'])













Chi2 value reported in benchmark collection: 47.9765479
chi2 value using AMICI:
47.976544579719786









Run optimization using pyPESTO


[14]:






# create objective function from amici model
# pesto.AmiciObjective is derived from pesto.Objective,
# the general pesto objective function class

model.requireSensitivitiesForAllParameters()


solver.setSensitivityMethod(amici.SensitivityMethod_forward)
solver.setSensitivityOrder(amici.SensitivityOrder_first)


objective = pypesto.AmiciObjective(model, solver, [edata], 1)








[15]:






# create optimizer object which contains all information for doing the optimization
optimizer = pypesto.ScipyOptimizer()

optimizer.solver = 'bfgs'








[16]:






# create problem object containing all information on the problem to be solved
x_names = ['x' + str(j) for j in range(0, 9)]
problem = pypesto.Problem(objective=objective,
                          lb=-5*np.ones((9)), ub=5*np.ones((9)),
                          x_names=x_names)








[17]:






# do the optimization
result = pypesto.minimize(problem=problem,
                          optimizer=optimizer,
                          n_starts=10) # 200










Visualization

Create waterfall and parameter plot


[18]:






# waterfall, parameter space,
import pypesto.visualize

pypesto.visualize.waterfall(result)
pypesto.visualize.parameters(result)








[18]:






<matplotlib.axes._subplots.AxesSubplot at 0x7fd112e15208>












[image: ../_images/example_boehm_JProteomeRes2014_30_1.png]
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Contribute


Contribute documentation




Contribute tests

Tests are located in the test folder. All files starting with test_
contain tests and are automatically run on Travis CI. To run them manually,
type:

python3 -m pytest test





or alternatively:

python3 -m unittest test





You can also run specific tests.

Tests can be written with pytest [https://docs.pytest.org/en/latest/]
or the unittest [https://docs.python.org/3/library/unittest.html] module.


PEP8

We try to respect the PEP8 [https://www.python.org/dev/peps/pep-0008]
coding standards. We run flake8 [https://flake8.pycqa.org] as part of the
tests. If flake8 complains, the tests won’t pass. You can run it via:

./run_flake8.sh





in Linux from the base directory, or directly from python. More, you can use
the tool autopep8 [https://pypi.org/project/autopep8] to automatically
fix various coding issues.






Contribute code


	Internally, we use numpy for arrays. In particular, vectors are
represented as arrays of shape (n,).
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Deploy


Versioning scheme

For version numbers, we use A.B.C, where


	C is increased for bug fixes,


	B is increased for new features,


	A is increased for major or API breaking changes.







Deploy a new release

When you are done with the changes on your git branch, proceed as follows
to deploy a new release.


Merge into master

First, you need to merge into the master:


	check that all tests on travis pass


	adapt the version number in the file pesto/version.py


	update the release notes in doc/releasenotes.rst


	merge into the origin master branch




To be able to actualize perform the merge, sufficient rights may be
required. Also, at least one review is required.




Upload to PyPI

After a successful merge, you need to update also the package on PyPI:


	create a so-called “wheel” via

python setup.py bdist_wheel





A wheel is essentially a zip archive which contains the source code
and the binaries (if any).



	upload the archive to PyPI using twine via

twin upload dist/pypesto-x.y.z-py3-none-any.whl





replacing x.y.z by the latest version number.





The last step will only be possible if you have sufficient rights.
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Objective


	
class pypesto.objective.Objective(fun=None, grad=None, hess=None, hessp=None, res=None, sres=None, fun_accept_sensi_orders=False, res_accept_sensi_orders=False, options=None)

	Bases: object

The objective class is a simple wrapper around the objective function,
giving a standardized way of calling. Apart from that, it manages several
things including fixing of parameters and history.


	Parameters

	
	fun (callable, optional) – The objective function to be minimized. If it only computes the
objective function value, it should be of the form


fun(x) -> float




where x is an 1-D array with shape (n,), and n is the parameter space
dimension.




	grad (callable, bool, optional) – Method for computing the gradient vector. If it is a callable,
it should be of the form


grad(x) -> array_like, shape (n,).




If its value is True, then fun should return the gradient as a second
output.




	hess (callable, optional) – Method for computing the Hessian matrix. If it is a callable,
it should be of the form


hess(x) -> array, shape (n,n).




If its value is True, then fun should return the gradient as a
second, and the Hessian as a third output, and grad should be True as
well.




	hessp (callable, optional) – 
	Method for computing the Hessian vector product, i.e.

	hessp(x, v) -> array_like, shape (n,)





computes the product H*v of the Hessian of fun at x with v.




	res ({callable, bool}, optional) – 
	Method for computing residuals, i.e.

	res(x) -> array_like, shape(m,).








	sres (callable, optional) – Method for computing residual sensitivities. If its is a callable,
it should be of the form


sres(x) -> array, shape (m,n).




If its value is True, then res should return the residual
sensitivities as a second output.




	fun_accept_sensi_orders (bool, optional) – Flag indicating whether fun takes sensi_orders as an argument.
Default: False.


	res_accept_sensi_orders (bool, optional) – Flag indicating whether res takes sensi_orders as an argument.
Default: False


	options (pypesto.ObjectiveOptions, optional) – Options as specified in pypesto.ObjectiveOptions.









	
history

	pypesto.ObjectiveHistory – For storing the call history. Initialized by the optimizer in
reset_history().






	
x_names

	list of str – Parameter names. The base Objective class provides None.
None if no names provided, otherwise a list of str, length dim_full.
Can be read by the problem.






	
preprocess

	callable – Preprocess input values to __call__.






	
postprocess

	callable – Postprocess output values from __call__.






	
sensitivity_orders

	tuple – Temporary variable to store requested sensitivity orders





Notes

preprocess, postprocess are configured in update_from_problem()
and can be reset using the reset() method.


	
__call__(x, sensi_orders: tuple = (0, ), mode='mode_fun')

	Method to obtain arbitrary sensitivities. This is the central method
which is always called, also by the get_* methods.

There are different ways in which an optimizer calls the objective
function, and in how the objective function provides information
(e.g. derivatives via separate functions or along with the function
values). The different calling modes increase efficiency in space
and time and make the objective flexible.


	Parameters

	
	x (array_like) – The parameters for which to evaluate the objective function.


	sensi_orders (tuple) – Specifies which sensitivities to compute, e.g. (0,1) -> fval, grad.


	mode (str) – Whether to compute function values or residuals.













	
__init__(fun=None, grad=None, hess=None, hessp=None, res=None, sres=None, fun_accept_sensi_orders=False, res_accept_sensi_orders=False, options=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
static as_ndarrays(result)

	Convert all array_like objects to numpy arrays. This has the advantage
of a uniform output datatype which offers various methods to assess
the data.






	
check_grad(x, x_indices=None, eps=1e-05, verbosity=1, mode='mode_fun') → pandas.core.frame.DataFrame

	Compare gradient evaluation: Firstly approximate via finite
differences, and secondly use the objective gradient.


	Parameters

	
	x (array_like) – The parameters for which to evaluate the gradient.


	x_indices (array_like, optional) – List of index values for which to compute gradients. Default: all.


	eps (float, optional) – Finite differences step size. Default: 1e-5.


	verbosity (int) – 
	Level of verbosity for function output

	0: no output
1: summary for all parameters
2: summary for individual parameters





Default: 1.




	mode (str) – Residual (MODE_RES) or objective function value
(MODE_FUN, default) computation mode.






	Returns

	result – gradient, finite difference approximations and error estimates.



	Return type

	pd.DataFrame










	
finalize_history()

	Finalize the history object.






	
get_fval(x)

	Get the function value at x.






	
get_grad(x)

	Get the gradient at x.






	
get_hess(x)

	Get the Hessian at x.






	
get_res(x)

	Get the residuals at x.






	
get_sres(x)

	Get the residual sensitivities at x.






	
has_fun

	




	
has_grad

	




	
has_hess

	




	
has_hessp

	




	
has_res

	




	
has_sres

	




	
static output_to_dict(sensi_orders, mode, output_tuple)

	Convert output tuple to dict.






	
static output_to_tuple(sensi_orders, mode, **kwargs)

	Return values as requested by the caller, since usually only a subset
is demanded. One output is returned as-is, more than one output are
returned as a tuple in order (fval, grad, hess).






	
reset()

	Completely reset the objective, i.e. undo the modifications in
update_from_problem().






	
reset_history(index=None)

	Reset the objective history and specify temporary saving options.


	Parameters

	index (As in ObjectiveHistory.index.) – 










	
update_from_problem(dim_full, x_free_indices, x_fixed_indices, x_fixed_vals)

	Handle fixed parameters. Later, the objective will be given parameter
vectors x of dimension dim, which have to be filled up with fixed
parameter values to form a vector of dimension dim_full >= dim.
This vector is then used to compute function value and derivaties.
The derivatives must later be reduced again to dimension dim.

This is so as to make the fixing of parameters transparent to the
caller.

The methods preprocess, postprocess are overwritten for the above
functionality, respectively.


	Parameters

	
	dim_full (int) – Dimension of the full vector including fixed parameters.


	x_free_indices (array_like of int) – Vector containing the indices (zero-based) of free parameters
(complimentary to x_fixed_indices).


	x_fixed_indices (array_like of int, optional) – Vector containing the indices (zero-based) of parameter components
that are not to be optimized.


	x_fixed_vals (array_like, optional) – Vector of the same length as x_fixed_indices, containing the values
of the fixed parameters.

















	
class pypesto.objective.ObjectiveOptions(trace_record=False, trace_record_grad=True, trace_record_hess=False, trace_record_res=False, trace_record_sres=False, trace_record_chi2=True, trace_record_schi2=True, trace_all=True, trace_file=None, trace_save_iter=10)

	Bases: dict

Options for the objective that are used in optimization, profiles
and sampling.


	Parameters

	
	trace_record (bool, optional) – Flag indicating whether to record the trace of function calls.
The trace_record_* flags only become effective if
trace_record is True.
Default: False.


	trace_record_grad (bool, optional) – Flag indicating whether to record the gradient in the trace.
Default: True.


	trace_record_hess (bool, optional) – Flag indicating whether to record the Hessian in the trace.
Default: False.


	trace_record_res (bool, optional) – Flag indicating whether to record the residual in
the trace.
Default: False.


	trace_record_sres (bool, optional.) – Flag indicating whether to record the residual sensitivities in
the trace.
Default: False.


	trace_record_chi2 (bool, optional) – Flag indicating whether to record the chi2 in the trace.
Default: True.


	trace_record_schi2 (bool, optional) – Flag indicating whether to record the chi2 sensitivities in the
trace.
Default: True.


	trace_all (bool, optional) – Flag indicating whether to record all (True, default) or only
better (False) values.


	trace_file (str or True, optional) – Either pass a string here denoting the file name for storing the
trace, or True, in which case the default file name
“tmp_trace_{index}.dat” is used. A contained substring {index}
is converted to the multistart index.
Default: None, i.e. no file is created.


	index, optional (trace_save_iter.) – Trace is saved every tr_save_iter iterations.
Default: 10.









	
__init__(trace_record=False, trace_record_grad=True, trace_record_hess=False, trace_record_res=False, trace_record_sres=False, trace_record_chi2=True, trace_record_schi2=True, trace_all=True, trace_file=None, trace_save_iter=10)

	Initialize self.  See help(type(self)) for accurate signature.






	
static assert_instance(maybe_options)

	Returns a valid options object.


	Parameters

	maybe_options (ObjectiveOptions or dict) – 














	
pypesto.objective.res_to_chi2(res)

	We assume that the residuals res are related to an objective function
value fval = chi2 via:

fval = 0.5 * sum(res**2)





which is the ‘Linear’ formulation in scipy.






	
pypesto.objective.sres_to_schi2(res, sres)

	In line with the assumptions in res_to_chi2.






	
class pypesto.objective.AmiciObjective(amici_model, amici_solver, edata, max_sensi_order=None, preprocess_edata=True, options=None)

	Bases: pypesto.objective.objective.Objective

This is a convenience class to compute an objective function from an
AMICI model.


	Parameters

	
	amici_model (amici.Model) – The amici model.


	amici_solver (amici.Solver) – The solver to use for the numeric integration of the model.


	edata – The experimental data.


	max_sensi_order (int) – Maximum sensitivity order supported by the model.









	
__init__(amici_model, amici_solver, edata, max_sensi_order=None, preprocess_edata=True, options=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_error_output(sensi_orders, mode)

	




	
postprocess_preequilibration(data, original_value_dict)

	




	
preprocess_edata(edata_vector)

	




	
preprocess_preequilibration(data)
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Problem

A problem contains the objective as well as all information like prior
describing the problem to be solved.


	
class pypesto.problem.Problem(objective, lb, ub, dim_full=None, x_fixed_indices=None, x_fixed_vals=None, x_guesses=None, x_names=None)

	Bases: object

The problem formulation. A problem specifies the objective function,
boundaries and constraints, parameter guesses as well as the parameters
which are to be optimized.


	Parameters

	
	objective (pypesto.Objective) – The objective function for minimization. Note that a shallow copy
is created.


	ub (lb,) – The lower and upper bounds. For unbounded directions set to inf.


	dim_full (int, optional) – The full dimension of the problem, including fixed parameters.


	x_fixed_indices (array_like of int, optional) – Vector containing the indices (zero-based) of parameter components
that are not to be optimized.


	x_fixed_vals (array_like, optional) – Vector of the same length as x_fixed_indices, containing the values
of the fixed parameters.


	x_guesses (array_like, optional) – Guesses for the parameter values, shape (g, dim), where g denotes the
number of guesses. These are used as start points in the optimization.


	x_names (array_like of str, optional) – Parameter names that can be optionally used e.g. in visualizations.
If objective.get_x_names() is not None, those values are used,
else the values specified here are used if not None, otherwise
the variable names are set to [‘x0’, … ‘x{dim_full}’]. The list
must always be of length dim_full.









	
dim

	int – The number of non-fixed parameters.
Computed from the other values.






	
x_free_indices

	array_like of int – Vector containing the indices (zero-based) of free parameters
(complimentary to x_fixed_indices).





Notes

On the fixing of parameter values:

The number of parameters dim_full the objective takes as input must
be known, so it must be either lb a vector of that size, or dim_full
specified as a parameter.

All vectors are mapped to the reduced space of dimension dim in __init__,
regardless of whether they were in dimension dim or dim_full before. If
the full representation is needed, the methods get_full_vector() and
get_full_matrix() can be used.


	
__init__(objective, lb, ub, dim_full=None, x_fixed_indices=None, x_fixed_vals=None, x_guesses=None, x_names=None)

	Initialize self.  See help(type(self)) for accurate signature.






	
get_full_matrix(x)

	Map matrix from dim to dim_full. Usually used for hessian.


	Parameters

	x (array_like, shape=(dim, dim)) – The matrix in dimension dim.










	
get_full_vector(x, x_fixed_vals=None)

	Map vector from dim to dim_full. Usually used for x, grad.


	Parameters

	
	x (array_like, shape=(dim,)) – The vector in dimension dim.


	x_fixed_vals (array_like, ndim=1, optional) – The values to be used for the fixed indices. If None, then nans are
inserted. Usually, None will be used for grad and
problem.x_fixed_vals for x.













	
get_reduced_matrix(x_full)

	Map matrix from dim_full to dim, i.e. delete fixed indices.


	Parameters

	x (array_like, ndim=2) – The matrix in dimension dim_full.










	
get_reduced_vector(x_full)

	Map vector from dim_full to dim, i.e. delete fixed indices.


	Parameters

	x (array_like, ndim=1) – The vector in dimension dim_full.










	
normalize_input()

	Reduce all vectors to dimension dim and have the objective accept
vectors of dimension dim.













          

      

      

    

  

  
    
    Optimize
    

    
 
  

    
      
          
            
  


Optimize


	
pypesto.optimize.minimize(problem, optimizer, n_starts, startpoint_method=None, result=None, options=None) → pypesto.result.Result

	This is the main function to call to do multistart optimization.


	Parameters

	
	problem (pypesto.Problem) – The problem to be solved.


	optimizer (pypesto.Optimizer) – The optimizer to be used n_starts times.


	n_starts (int) – Number of starts of the optimizer.


	startpoint_method ({callable, False}, optional) – Method for how to choose start points. False means the optimizer does
not require start points


	result (pypesto.Result) – A result object to append the optimization results to. For example,
one might append more runs to a previous optimization. If None,
a new object is created.


	options (pypesto.OptimizeOptions, optional) – Various options applied to the multistart optimization.













	
class pypesto.optimize.OptimizeOptions(startpoint_resample=False, allow_failed_starts=False)

	Bases: dict

Options for the multistart optimization.


	Parameters

	
	startpoint_resample (bool, optional) – Flag indicating whether initial points are supposed to be resampled if
function evaluation fails at the initial point


	allow_failed_starts (bool, optional) – Flag indicating whether we tolerate that exceptions are thrown during
the minimization process.









	
__init__(startpoint_resample=False, allow_failed_starts=False)

	Initialize self.  See help(type(self)) for accurate signature.






	
static assert_instance(maybe_options)

	Returns a valid options object.


	Parameters

	maybe_options (OptimizeOptions or dict) – 














	
class pypesto.optimize.OptimizerResult(x=None, fval=None, grad=None, hess=None, n_fval=None, n_grad=None, n_hess=None, n_res=None, n_sres=None, x0=None, fval0=None, trace=None, exitflag=None, time=None, message=None)

	Bases: dict

The result of an optimizer run. Used as a standardized return value to
map from the individual result objects returned by the employed
optimizers to the format understood by pypesto.

Can be used like a dict.


	
x

	ndarray – The best found parameters.






	
fval

	float – The best found function value, fun(x).






	
grad, hess

	ndarray – The gradient and Hessian at x.






	
n_fval

	int – Number of function evaluations.






	
n_grad

	int – Number of gradient evaluations.






	
n_hess

	int – Number of Hessian evaluations.






	
exitflag

	int – The exitflag of the optimizer.






	
message

	str – Textual comment on the optimization result.





Notes

Any field not supported by the optimizer is filled with None. Some
fields are filled by pypesto itself.


	
__init__(x=None, fval=None, grad=None, hess=None, n_fval=None, n_grad=None, n_hess=None, n_res=None, n_sres=None, x0=None, fval0=None, trace=None, exitflag=None, time=None, message=None)

	Initialize self.  See help(type(self)) for accurate signature.










	
class pypesto.optimize.Optimizer

	Bases: abc.ABC

This is the optimizer base class, not functional on its own.

An optimizer takes a problem, and possibly a start point, and then
performs an optimization. It returns an OptimizerResult.


	
__init__()

	Default constructor.






	
static get_default_options()

	Create default options specific for the optimizer.






	
is_least_squares()

	




	
minimize(problem, x0, index)

	”
Perform optimization.










	
class pypesto.optimize.ScipyOptimizer(method='L-BFGS-B', tol=1e-09, options=None)

	Bases: pypesto.optimize.optimizer.Optimizer

Use the SciPy optimizers.


	
__init__(method='L-BFGS-B', tol=1e-09, options=None)

	Default constructor.






	
static get_default_options()

	Create default options specific for the optimizer.






	
is_least_squares()

	




	
minimize(problem, x0, index)

	








	
class pypesto.optimize.DlibOptimizer(method, options=None)

	Bases: pypesto.optimize.optimizer.Optimizer

Use the Dlib toolbox for optimization.


	
__init__(method, options=None)

	Default constructor.






	
static get_default_options()

	Create default options specific for the optimizer.






	
is_least_squares()

	




	
minimize(problem, x0, index)
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Result

The pypesto.Result object contains all results generated by
the pypesto components. It contains sub-results for
optimization, profiles, sampling.


	
class pypesto.result.OptimizeResult

	Bases: object

Result of the minimize() function.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.






	
append(optimizer_result)

	Append an optimizer result to the result object.


	Parameters

	optimizer_result – The result of one (local) optimizer run.










	
as_dataframe(keys=None) → pandas.core.frame.DataFrame

	Get as pandas DataFrame. If keys is a list,
return only the specified values.






	
as_list(keys=None) → list

	Get as list. If keys is a list,
return only the specified values.


	Parameters

	keys (list(str), optional) – Labels of the field to extract.










	
get_for_key(key) → list

	Extract the list of values for the specified key as a list.






	
sort()

	Sort the optimizer results by function value fval (ascending).










	
class pypesto.result.ProfileResult

	Bases: object

Result of the profile() function.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.










	
class pypesto.result.Result(problem=None)

	Bases: object

Universal result object for pypesto.
The algorithms like optimize, profile,
sample fill different parts of it.


	
problem

	pypesto.Problem – The problem underlying the results.






	
optimize_result

	The results of the optimizer runs.






	
profile_result

	The results of the profiler run.






	
sample_result

	The results of the sampler run.






	
__init__(problem=None)

	Initialize self.  See help(type(self)) for accurate signature.










	
class pypesto.result.SampleResult

	Bases: object

Result of the sample() function.


	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.
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Visualize

pypesto comes with various visualization routines. To use these,
import pypesto.visualize.


	
pypesto.visualize.waterfall(result, ax=None)

	Plot waterfall plot.


	Parameters

	
	result (pypesto.Result) – Optimization result obtained by ‘optimize.py’


	ax (matplotlib.Axes, optional) – Axes object to use.






	Returns

	ax – The plot axes.



	Return type

	matplotlib.Axes










	
pypesto.visualize.waterfall_lowlevel(fvals, ax=None)

	Plot waterfall plot using list of function values.


	Parameters

	
	fvals (numeric list or array) – Including values need to be plotted.


	ax (matplotlib.Axes, optional) – Axes object to use.






	Returns

	ax – The plot axes.



	Return type

	matplotlib.Axes










	
pypesto.visualize.assign_clusters(vals)

	Find clustering.


	Parameters

	vals (numeric list or array) – List to be clustered.



	Returns

	
	clust (numeric list) – Indicating the corresponding cluster of each element from
‘vals’.


	clustsize (numeric list) – Size of clusters, length equals number of clusters.


	ind_clust (numeric list) – Indices to reconstruct ‘clust’ from a list with 1:number of clusters.















	
pypesto.visualize.assign_clustered_colors(vals)

	Cluster and assign colors.


	Parameters

	vals (numeric list or array) – List to be clustered and assigned colors.



	Returns

	Col – One for each element in ‘vals’.



	Return type

	list of RGB










	
pypesto.visualize.parameters(result, ax=None)

	Plot parameter values.


	Parameters

	
	result (pypesto.Result) – Optimization result obtained by ‘optimize.py’.


	ax (matplotlib.Axes, optional) – Axes object to use.






	Returns

	ax – The plot axes.



	Return type

	matplotlib.Axes










	
pypesto.visualize.parameters_lowlevel(xs, fvals, lb=None, ub=None, x_labels=None, ax=None)

	Plot parameters plot using list of parameters.


	Parameters

	
	xs (nested list or array) – Including optimized parameters for each startpoint.
Shape: (n_starts, dim).


	fvals (numeric list or array) – Function values. Needed to assign cluster colors.


	ub (lb,) – The lower and upper bounds.


	x_labels (array_like of str, optional) – Labels to be used for the parameters.


	ax (matplotlib.Axes, optional) – Axes object to use.






	Returns

	ax – The plot axes.



	Return type

	matplotlib.Axes
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Startpoint

Method for selecting points that can be used as start points
for multistart optimization. All methods have the form


method(**kwargs) -> startpoints




where the kwargs can/should include the following parameters, which are
passed by pypesto:


	n_starts: int

	Number of points to generate.



	lb, ub: ndarray

	Lower and upper bound, may for most methods not contain nan or inf
values.



	x_guesses: ndarray, shape=(g, dim), optional

	Parameter guesses by the user, where g denotes the number of guesses.
Note that these are only possibly taken as reference points to generate
new start points (e.g. to maximize some distance) depending on the
method, but regardless of g, there are always n_starts points generated
and returned.



	objective: pypesto.Objective, optional

	The objective can be used to evaluate the goodness of start points.



	max_n_fval: int, optional

	The maximum number of evaluations of the objective function allowed.






	
pypesto.startpoint.uniform(**kwargs)

	Generate uniform points.






	
pypesto.startpoint.latin_hypercube(**kwargs)

	Generate latin hypercube points.






	
pypesto.startpoint.assign_startpoints(n_starts, startpoint_method, problem, options)

	Assign startpoints.
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Release notes


0.0 series


0.0.2 (2018-10-18)


	Fix parameter values


	Record trace of function values


	Amici objective to directly handle amici models







0.0.1 (2018-07-25)


	Basic framework and implementation of the optimization
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Contact

Discovered an error? Need help? Not sure if something works as intended?
Please contact us!


	Yannik Schälte: yannik.schaelte@gmail.com
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License

Copyright (c) 2018, Jan Hasenauer
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.









          

      

      

    

  

  
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pypesto	
       

     
       	
       	   
       pypesto.objective	
       

     
       	
       	   
       pypesto.optimize	
       

     
       	
       	   
       pypesto.problem	
       

     
       	
       	   
       pypesto.profile	
       

     
       	
       	   
       pypesto.result	
       

     
       	
       	   
       pypesto.sample	
       

     
       	
       	   
       pypesto.startpoint	
       

     
       	
       	   
       pypesto.visualize	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | W
 | X
 


_


  	
      	__call__() (pypesto.objective.Objective method)


      	__init__() (pypesto.objective.AmiciObjective method)

      
        	(pypesto.objective.Objective method)


        	(pypesto.objective.ObjectiveOptions method)


        	(pypesto.optimize.DlibOptimizer method)


        	(pypesto.optimize.OptimizeOptions method)


        	(pypesto.optimize.Optimizer method)


        	(pypesto.optimize.OptimizerResult method)


        	(pypesto.optimize.ScipyOptimizer method)


        	(pypesto.problem.Problem method)


        	(pypesto.result.OptimizeResult method)


        	(pypesto.result.ProfileResult method)


        	(pypesto.result.Result method)


        	(pypesto.result.SampleResult method)


      


  





A


  	
      	AmiciObjective (class in pypesto.objective)


      	append() (pypesto.result.OptimizeResult method)


      	as_dataframe() (pypesto.result.OptimizeResult method)


      	as_list() (pypesto.result.OptimizeResult method)


      	as_ndarrays() (pypesto.objective.Objective static method)


  

  	
      	assert_instance() (pypesto.objective.ObjectiveOptions static method)

      
        	(pypesto.optimize.OptimizeOptions static method)


      


      	assign_clustered_colors() (in module pypesto.visualize)


      	assign_clusters() (in module pypesto.visualize)


      	assign_startpoints() (in module pypesto.startpoint)


  





C


  	
      	check_grad() (pypesto.objective.Objective method)


  





D


  	
      	dim (pypesto.problem.Problem attribute)


  

  	
      	DlibOptimizer (class in pypesto.optimize)


  





E


  	
      	exitflag (pypesto.optimize.OptimizerResult attribute)


  





F


  	
      	finalize_history() (pypesto.objective.Objective method)


  

  	
      	fval (pypesto.optimize.OptimizerResult attribute)


  





G


  	
      	get_default_options() (pypesto.optimize.DlibOptimizer static method)

      
        	(pypesto.optimize.Optimizer static method)


        	(pypesto.optimize.ScipyOptimizer static method)


      


      	get_error_output() (pypesto.objective.AmiciObjective method)


      	get_for_key() (pypesto.result.OptimizeResult method)


      	get_full_matrix() (pypesto.problem.Problem method)


      	get_full_vector() (pypesto.problem.Problem method)


  

  	
      	get_fval() (pypesto.objective.Objective method)


      	get_grad() (pypesto.objective.Objective method)


      	get_hess() (pypesto.objective.Objective method)


      	get_reduced_matrix() (pypesto.problem.Problem method)


      	get_reduced_vector() (pypesto.problem.Problem method)


      	get_res() (pypesto.objective.Objective method)


      	get_sres() (pypesto.objective.Objective method)


  





H


  	
      	has_fun (pypesto.objective.Objective attribute)


      	has_grad (pypesto.objective.Objective attribute)


      	has_hess (pypesto.objective.Objective attribute)


  

  	
      	has_hessp (pypesto.objective.Objective attribute)


      	has_res (pypesto.objective.Objective attribute)


      	has_sres (pypesto.objective.Objective attribute)


      	history (pypesto.objective.Objective attribute)


  





I


  	
      	is_least_squares() (pypesto.optimize.DlibOptimizer method)

      
        	(pypesto.optimize.Optimizer method)


        	(pypesto.optimize.ScipyOptimizer method)


      


  





L


  	
      	latin_hypercube() (in module pypesto.startpoint)


  





M


  	
      	message (pypesto.optimize.OptimizerResult attribute)


      	minimize() (in module pypesto.optimize)

      
        	(pypesto.optimize.DlibOptimizer method)


        	(pypesto.optimize.Optimizer method)


        	(pypesto.optimize.ScipyOptimizer method)


      


  





N


  	
      	n_fval (pypesto.optimize.OptimizerResult attribute)


      	n_grad (pypesto.optimize.OptimizerResult attribute)


  

  	
      	n_hess (pypesto.optimize.OptimizerResult attribute)


      	normalize_input() (pypesto.problem.Problem method)


  





O


  	
      	Objective (class in pypesto.objective)


      	ObjectiveOptions (class in pypesto.objective)


      	optimize_result (pypesto.result.Result attribute)


      	OptimizeOptions (class in pypesto.optimize)


  

  	
      	Optimizer (class in pypesto.optimize)


      	OptimizeResult (class in pypesto.result)


      	OptimizerResult (class in pypesto.optimize)


      	output_to_dict() (pypesto.objective.Objective static method)


      	output_to_tuple() (pypesto.objective.Objective static method)


  





P


  	
      	parameters() (in module pypesto.visualize)


      	parameters_lowlevel() (in module pypesto.visualize)


      	postprocess (pypesto.objective.Objective attribute)


      	postprocess_preequilibration() (pypesto.objective.AmiciObjective method)


      	preprocess (pypesto.objective.Objective attribute)


      	preprocess_edata() (pypesto.objective.AmiciObjective method)


      	preprocess_preequilibration() (pypesto.objective.AmiciObjective method)


      	Problem (class in pypesto.problem)


      	problem (pypesto.result.Result attribute)


  

  	
      	profile_result (pypesto.result.Result attribute)


      	ProfileResult (class in pypesto.result)


      	pypesto.objective (module)


      	pypesto.optimize (module)


      	pypesto.problem (module)


      	pypesto.profile (module)


      	pypesto.result (module)


      	pypesto.sample (module)


      	pypesto.startpoint (module)


      	pypesto.visualize (module)


  





R


  	
      	res_to_chi2() (in module pypesto.objective)


      	reset() (pypesto.objective.Objective method)


  

  	
      	reset_history() (pypesto.objective.Objective method)


      	Result (class in pypesto.result)


  





S


  	
      	sample_result (pypesto.result.Result attribute)


      	SampleResult (class in pypesto.result)


      	ScipyOptimizer (class in pypesto.optimize)


  

  	
      	sensitivity_orders (pypesto.objective.Objective attribute)


      	sort() (pypesto.result.OptimizeResult method)


      	sres_to_schi2() (in module pypesto.objective)


  





U


  	
      	uniform() (in module pypesto.startpoint)


  

  	
      	update_from_problem() (pypesto.objective.Objective method)


  





W


  	
      	waterfall() (in module pypesto.visualize)


  

  	
      	waterfall_lowlevel() (in module pypesto.visualize)


  





X


  	
      	x (pypesto.optimize.OptimizerResult attribute)


  

  	
      	x_free_indices (pypesto.problem.Problem attribute)


      	x_names (pypesto.objective.Objective attribute)


  







          

      

      

    

  
_images/example_boehm_JProteomeRes2014_30_1.png
Function value

000

300

3000

2500

2000

1500

1000

500

Waterfall plot

oo

1 2 3 4 5 & 71
‘Ordered optimizer run






_images/example_boehm_JProteomeRes2014_30_2.png
Estimated parameters

xapu sziawese

Parameter value





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to pyPESTO’s documentation!
        


        		
          Install and upgrade
          
            		
              Requirements
              
                		
                  I cannot use my system’s Python distribution, what now?
                


              


            


            		
              Install from PIP
            


            		
              Install from GIT
            


            		
              Upgrade
            


            		
              Install optional packages
            


          


        


        		
          Examples
          
            		
              Rosenbrock banana
              
                		
                  Define the objective and problem
                


                		
                  Illustration
                


                		
                  Run optimization
                


                		
                  Visualize and analyze results
                


              


            


            		
              Conversion reaction
              
                		
                  Compile AMICI model
                


                		
                  Load AMICI model
                


                		
                  Optimize
                


                		
                  Visualize
                


                		
                  Data storage
                


                		
                  Profiles
                


                		
                  Sampling
                


              


            


            		
              Fixed parameters
              
                		
                  Define problem
                


                		
                  Optimize
                


                		
                  Visualize
                


              


            


            		
              AMICI Python example “Boehm”
              
                		
                  The example model
                


                		
                  Importing an SBML model, compiling and generating an AMICI module
                


                		
                  Running simulations and analyzing results
                


                		
                  Run optimization using pyPESTO
                


                		
                  Visualization
                


              


            


            		
              Download the examples as notebooks
            


          


        


        		
          Contribute
          
            		
              Contribute documentation
            


            		
              Contribute tests
              
                		
                  PEP8
                


              


            


            		
              Contribute code
            


          


        


        		
          Deploy
          
            		
              Versioning scheme
            


            		
              Deploy a new release
              
                		
                  Merge into master
                


                		
                  Upload to PyPI
                


              


            


          


        


        		
          Objective
        


        		
          Problem
        


        		
          Optimize
        


        		
          Profile
        


        		
          Sample
        


        		
          Result
        


        		
          Visualize
        


        		
          Startpoint
        


        		
         